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ground state (4 =0. 0091 cm™ for Mn** in
ZnSiFg - 6H,0 lattice). For D, which is not known
experimentally (and there being no obvious way to
obtain it theoretically), we assume several values,
namely, (a)-0.0134 cm™ (i. e, that for Mn*™), (b)
twice the value given in (a), (c) five times the
value given in (a), (d) one-thousand times the value
given in (a) [i.e., of the same order of magnitude
as in ferrous fluorosilicate’], (e) one-fifth the
value given in (a), and (f) one-tenth the value given
in (a).

The results for the various cases of final Fe'™
configurations are presented in Table I. It is seen
that @, ranges anywhere from 0. 25 to 0.53.2 We
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will not make any ‘attempt to calculate a final value
of @, which requires a knowledge of the branching
ratios to the various end-state configurations,
namely, Fe™, Fe*™, ... since these ratios are
not at all known. However, it is clear from the
results that a final value of @,=0.32 is possible.

We thus conclude that the model of I includes in
its range the observed reorientation for the case
of Co” in a fluorosilicate lattice. -
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Mass absorption coefficients for six negative and three positive S-particle sources have been
determined for aluminum and tin absorbers. Most of the large difference in the u/p values rel-
evant to %Rb and ®®Ga reported for aluminum by Takhar is shown to be due to the difference in
their end-point energies; however, a significant difference in u/p values for tin remains.

Takhar! compared the transmission of positive
B particles from %8Ga (having the end-point energy
E,=1.88 MeV) with that of negative B particles
from ®*Rb (E,=1.77 MeV) in various substances
and reported that the mass absorption coefficient
w/p for positive B particles is less than that for
negative B particles by about 12% for aluminum,
19% for copper, 25% for tin, and 35% for lead.
The aluminum results were in disagreement with
the results of Chang et al.? and of Baskova and

Gorbachev, 2 who observed no significant difference
in the transmission through aluminum foils of
monoenergetic positive and negative B particles.
Commenting on the results of Takhar for aluminum,
Cook? observed that the B-particle spectra of ®*Ga
and %Rb are complex and not sufficiently similar

to allow direct comparison of transmission through
various foils of the positive and negative g parti-
cles. He also pointed out that if one accepts the
energy-dependent formula of Gleason ef al. 5 for
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FIG. 1. Schematic diagram of the
experimental arrangement. S, source;
L, Lucite collimator; Pb, lead colli-
mator; A, absorber; D, detector.

the mass absorption coefficients for positive as
well as negative B particles, then 9% of the 12%
difference observed by Takhar can be attributed
to the difference inend-point energies of the two 8-
particle spectra. However, he expressed doubt
as to the validity of the formula of Gleason ef al.®
for positive B particles. It is well known that
the values of mass absorption coefficients for g
particles are influenced by the geometry, and so
it is desirable to determine the coefficients for
both positive and negative g particles in the same
geometry. In view of these points we have de-
termined, adopting a good geometry arrangement
which is suitable for positive as well as negative
B particles, the mass absorption coefficients in
aluminum and tin using six negative g-particle
sources and three positive B-particle sources cov-
ering the end-point energy range from about 0. 4
to 2,3 MeV.

In the geometry adopted by Gleason et al.® the
absorbers are placed close to the detector, and
so the background counts due to the annihilation
photons produced in the absorber remain an ap-
preciable fraction of the counts due to the trans-
mitted positive g particles. This background
varies as a function of thickness of the absorber.
Such an arrangement is, therefore, not suitable
for the determination of mass absorption coeffi-
cient of positive p particles. The experimental
arrangement of the present investigations is shown
in Fig. 1. A collimated beam of B particles is
made to fall on a Geiger counter and the absorbers
are placed midway between the source and the de-
tector. The efficiency of the Geiger counter used
is less than 0. 5% for 0.5-MeV photons, and in this
arrangement the probability that an annihilation
photon produced in the absorber would lead to a
background count is less than 5x107%, Thus we see

that even when 99% of the positive g particles are
stopped in the absorber, the background counts due
to annihilation photons produced in the absorber
would be less than 1% of the counts due to the trans-
mitted positive B particles. Because of the small
solid angle subtended by the effective area of the
detector, the background counts resulting from the
secondary electrons produced in the absorber, due
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to the ¥ rays and annihilation photons from the
source, are also negligible. So in this arrange-
ment, the variation in the background counts that
depend on the thickness of the absorber remains
negligible compared to the counts due to the trans-
mitted positive B particles. Hence this arrange-
ment is suitable for studying the transmission of
positive B particles as a function of the absorber
thickness.

Using this experimental arrangement we have
measured the transmission of positive B particles
from the sources %®Co (0.474), 2?Na (0. 544), and
%Ga (1.88) and of negative B particles from the
sources '*W (0.43), 2™T1 (0.76), °'Y (1.545), P
(1.697), ®Rb (1.774), and *°Y (2. 284); the figures
within the brackets indicate the end-point energies®
in MeV. All the positron sources and ®*Rb emit
Y rays also, and the measured transmission has
been corrected for this background using the stan-
dard method. We find that for both positive and
negative g particles the transmitted g-particle
intensity decreases exponentially with the thickness
of the absorber over different ranges of transmis-
sion for different g-particle sources and for dif-
ferent absorbers. However, for all the sources
used it decreases exponentially in the transmission
range from 20 to 1% in the case of aluminum and
from 10 to 0. 5% in the case of tin. Using the least-
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FIG. 2. Experimentally determined values of logyq pu/p

(cm?g) plotted as a function of logyE, (MeV). The solid
lines are the least-squares straight-lines fits for negative'
B-particle sources.
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TABLE I. Comparison of u/p (cm? g") values of posi-
tive and negative B particles for tin.

B-particle (u/p)* (u/p)
source expt calc Deviation
8co 55.3 59.4 -1%
2Na 46.7 49.4 -6%
88Ga 8.53 9.5 -10%

squares-fit method, we have calculated the mass
absorption coefficient for each pg-particle source
over these transmission ranges only; that is,
only the most energetic portion of the g-particle
spectra (near the end-point energy E,) is employed
in the determination of u/p.

The mass absorption coefficient for negative
B particles follows a law of the type®

n/p=AEz®, @)

where A and B are constants. In order to facili-
tate comparison of u/p values of the positive and
negative p-particle spectra we have, in Fig. 2,
plotted the experimentally determined values of
the log,, 1/p against log,, E, for all g-particle
sources used. The solid lines are the least-squares
straight-lines fits for negative p-particle spectra.
We see that, in the case of aluminum, the exper-
imental points corresponding to positive g-particle
spectra lie close (within an experimental error of
about 3%) to the least-squares straight-line fit
of the negative p-particle spectra. This shows
that the u/p values for positive p-particle spectra

also satisfy the equation u/p=17.6 E;'**® relevant

I

to negative p-particle spectra, where pu/p is in
units of cm?g™ and E, in MeV, and that there is
no significant difference in the values of the mass
absorption coefficients of aluminum for positive
and negative B-particle spectra having the same
end-point energy.

On the other hand, in the case of tin the experi-
mentally determined u/p values corresponding
to the positive p-particle spectra lie lower than
the least-squares straight-line fits relevant to
negative p-particle spectra. This shows that the
mass absorption coefficient corresponding to the
positive p-particle spectrum is significantly smaller
than that corresponding to the negative p-particle
spectrum having the same end-point energy. In
Table I we compare the experimentally determined
u/p values relevant to three positive g-particle
sources with the calculated w/p values using the
least-squares-fit equation u/p=22 E;'**® cm?g!
of the negative p-particle spectra having the same
end-point energy. We see from the last column
that the difference increases with the end-point
energy going from 6% at Ey=0. 544 MeV to 10% at
E,=1.88 MeV. Takhar! reported a 25% difference
for tin using %Rb and %Ga.

We may conclude that, if we assume that a
formula of the type given by Gleason et al.’ is.
applicable to both negative and positive B particles,
the large difference observed by Takhar® in alumi-
num in the mass absorption coefficients of positive
and negative g particles is essentially due to the
difference in the end-point energies of the sources
used, as rightly pointed out by Cook.*? Part, but
not all, of the difference for tin is also attributable
to the difference in the end-point energies. We
have not studied copper or lead.
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